Wensum DTC Mitigation Measures Cover Crops: 2013/14 & 2015/16 **University of** East Anglia E FARMS Co.

First Cover Crop Trial

November 2013

Field Drain Results

P = **75%** reduction in N losses

L = 88% reduction in N losses

Soil N Results (0-90 cm depth)

Financial Returns: 2013/14

	Block J	Block P	Block L
	Fallow	Cover crop	Cover crop
Gross output beans: Yield (t/ha)	5.80 1334	6.55	6.24 1435
Output at £230/t (£/ha) Costs: Establishment (£/ha)	96	1506 128	67
Applications (£/ha) Variable costs (£/ha) Harvesting (£/ha)	90 318 85	120 415 85	120 432 85
Total costs (£/ha)	589	748	704
Margin (£/ha)	745	758	731

8-12% higher

£100–150/ha higher

Acknowledgement: Data supplied by Salle Farms Co.

Cover Crop Fields: 3rd December 2015

Salle Old Grounds

Oilseed radish/rye mix (85 seeds/m²)

without turkey muck

Howards Barn

Oilseed radish (165 seeds/m²)

without turkey muck

Field Drain Nitrate: winter 2015/16

Field Drain Nitrate: winter 2015/16

Field Drain Nitrate: winter 2015/16

Financial Returns: 2015/16

	Block 1	Block 1	Block 2	Block 2
	Spring Beans		Sugar Beet	
	Fallow	Cover crop OS Radish	Fallow	Cover crop mixture
Gross output: Yield (t/ha)	5.9	4.7	64.3	85.6
Bean output @ £230/t (£/ha)	1,355	1,090	4.000	0.444
Beet Output @ £25/t (£/ha)			1,606	2,141
Costs: Establishment (£/ha)	107	143	158	147
Applications (£/ha)	94	85	105	102
Variable costs (£/ha)	293	338	562	592
Harvesting (£/ha)	85	85	200	200
Total costs (£/ha)	580	650	1,025	1,041
Margin (£/ha)	775	440	260	672

33% higher

£16 higher £412 higher

Acknowledgement: Data supplied by Salle Farms Co.

Agricultural Equipment

Field Measurements

- Soil texture
- Soil structure
- Infiltration rate
- Bulk density
- SMN
- P, K, Mg indices
- OC content
- Soil biology

Aim: to assess the physical, chemical and biological condition of the soils

Soil Structure: bulk density

0-15 cm depth

Soil Chemistry: organic carbon

0-15 cm depth

Soil Nutrients: phosphorus

0-15 cm depth

Same trend observed for potassium (K) and magnesium (Mg)

Soil Nutrients: nitrogen

0-15 cm depth

Soil Leaching: nitrogen

Field drains

Block P = 4.8 mg/L

Block L = 4.5 mg/L

Soil Biology: worm counts

April 2016 | September 2016 | March 2017

Financial Returns: 2013–2017

		2013/14	2014/15	2015/16	2016/17
		Spring beans + CC	Winter wheat	Winter barley	Oilseed rape
Block J	Total cost (£/ha)	589	784	561	-
Plough	Output (£/ha)	1,334	1,694	1,086	-
	Margin (£/ha)	745	910	525	-
Block P	Total cost (£/ha)	748	782	581	-
Shallow	Output (£/ha)	1,506	1,695	1,099	-
non-inv.	Margin (£/ha)	758	913	518	-
Block L	Total cost (£/ha)	704	788	598	-
Direct	Output (£/ha)	1,435	1,620	1,086	-
drill	Margin (£/ha)	731	832	488	-

Block L: Lowest fuel/labour costs | highest pesticide/fertiliser inputs | Lower yields Margins 4-9% below Block P

Contents lists available at ScienceDirect

Agriculture, Ecosystems and Environment

journal homepage: www.elsevier.com/locate/agee

Assessing the farm-scale impacts of cover crops and non-inversion tillage regimes on nutrient losses from an arable catchment

Richard J. Cooper^{a,*}, Zanist Hama-Aziz^a, Kevin M. Hiscock^a, Andrew A. Lovett^a, Steve J. Dugdale^a, Gisela Sünnenberg^a, Lister Noble^b, James Beamish^c, Poul Hovesen^c

ARTICLE INFO

Article history:
Received 31 May 2016
Received in revised form 11 October 2016
Accepted 22 December 2016
Available online 29 December 2016

Keywords: Mitigation Agriculture Nitrate Phosphorus Conservation tillage River

ABSTRACT

The efficacy of cover crops and non-inversion tillage regimes at minimising farm-scale nutrient losses were assessed across a large, commercial arable farm in Norfolk, UK. The trial area, covering 143 ha, was split into three blocks: winter fallow with mouldboard ploughing (Block J); shallow non-inversion tillage with a winter oilseed radish (*Raphanus sativus*) cover crop (Block P); and direct drilling with a winter oilseed radish cover crop (Block L). Soil, water and vegetation chemistry across the trial area were monitored over the 2012/13 (pre-trial), 2013/14 (cover crops and non-inversion tillage) and 2014/15 (non-inversion tillage only) farm years. Results revealed oilseed radish reduced nitrate (NO₃-N) leaching losses in soil water by 75–97% relative to the fallow block, but had no impact upon phosphorus (P) losses. Corresponding reductions in riverine NO₃-N concentrations were not observed, despite the trial area covering 20% of the catchment. Mean soil NO₃-N concentrations were reduced by ~77% at 60–90 cm depth beneath the cover crop, highlighting the ability of deep rooting oilseed radish to scavenge nutrients from deep within the soil profile. Alone, direct drilling and shallow non-inversion tillage were ineffective at reducing soil water NO₃-N and P concentrations relative to conventional ploughing. Applying starter fertiliser to the cover crop increased radish biomass and nitrogen (N) uptake, but resulted in net N accumulation within the soil. There was negligible difference between the gross margins of direct drilling

^a School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TI, UK

^b Farm Systems & Environment, Low Road, Wortwell, Harleston, IP20 OHJ, UK

^c Salle Farms Co. Ltd, Manor Farm, Salle, Reepham, NR10 4SF, UK